

1

Adaptive posit tensor processing

for error-free linear algebra

Theodore Omtzigt
theo@posit-research.com

Abstract—Posits are a tapered precision real number system

that provide efficient implementations of fused dot products,

enabling tensor processing with fine-grain rounding error control

to deliver error-free linear algebra. We present an adaptive posit

tensor processing architecture that enables hardware

experimentation with posit-enabled algebras and algorithms. We

will introduce posits and fused operators and summarize their

benefits. The implementation in a general-purpose CPU is

discussed highlighting the difficulties that fused operators create

for context switch state and caches. A hardware accelerated

approach solves these problem by explicitly scheduling the

execution with the fused operators as constraints.

Index Terms—posit, error free linear algebra, fused dot product,

tensor processing, TPU, unum computing

I. INTRODUCTION

igh-performance computing techniques are rapidly

changing due to sequential processing having reached a

performance plateau. Hardware accelerators and domain

specific processors offer better performance per Watt as

compared to general purpose computational structures, but their

adoption is hindered by diminished economies of scale. Only in

those verticals that are constrained by power, cost, or size, is

leveraging domain specific hardware accelerators an economic

possibility. Fortunately, large economically valuable verticals

now exist where power, cost, and size are key differentiators for

computational solutions. Examples are video encode-decode in

mobile devices, sensor fusion in autonomous vehicles, robotic,

and embedded industrial systems, and smart sensors and

analytic gateways used in the Internet of Things, and the

Industrial Internet of Things. Both Google [6] and Microsoft

have designed and are deploying at scale domain specific

processors to aid in tensor processing specifically for Deep

Learning applications in their clouds, and mobile chip makers

such as Apple, Samsung, and Qualcomm all have announced

inference engines. It is very clear that the leaders in the industry

have progressed to building custom hardware solutions to

strategically differentiate their services.

The proliferation of high-performance computing into real-

time and embedded use cases has amplified a major short

coming of the standard floating-point number system: floating

point addition and multiplication are not associative. High-

performance task-level parallel systems introduce different

execution orders of the original equations causing non-

deterministic reordering of intermediate results. When such

systems are inspected the non-deterministic reordering makes

reproduction of the failure difficult if not impossible.

Several solutions to this problem have been proposed starting

in 1986 by the work of Ulrich Kulisch [5]. The basic idea in that

approach is to leverage a super-accumulator that accumulates

intermediate results of a computational path at full precision.

The actual rounding decision is made explicit by language

constructs under control of the programmer. The fundamental

problem in that approach is caused by the structure of floating

point: a fixed-point representation of the result of a floating

point multiply requires 1 + 2 × (2𝑒𝑏𝑖𝑡𝑠 + 𝑚𝑏𝑖𝑡𝑠), where 𝑒𝑏𝑖𝑡𝑠

and 𝑚𝑏𝑖𝑡𝑠 are the number of bits in the exponent and mantissa

respectively. To be able to accumulate 2𝑘 products we would

add k bits to the accumulator. For single precision and double

precision floats the approximate size of these super-

accumulators would be 640bits, and 4288bits respectively.

Modern implementations of the Kulisch idea can be found in

[12].

Another approach is to use arbitrary precision arithmetic. An

example is the GNU Multiple Precision Floating-Point Reliably

(MPFR [10]). The upside is that very difficult computation

problems in computational geometry and optimization become

feasible, but the downside is that the common case is slowed

down by 3 orders of magnitude.

ExBLAS [8] is a software approach that isn’t as slow as

arbitrary precision, but is still at least an order of magnitude

slower than native execution. ExBLAS uses the super-

accumulator approach coupled with a clever trick to compute

the rounding error of each operation. By keeping track of how

error accumulates in the basic linear algebra subroutines they

are able to create reproducible results.

RepoBLAS [11] instead focuses on performance and relaxes

the exactness constraint to deliver reproducible results in task-

parallel execution environments.

 Floating-point based arithmetic error control is complicated

by the structure of the number systems. Super-accumulators

grow very large due to the disproportional dynamic range of

floats compared to their precision. Gustafson [1] has been

working on tapered number systems to regain control over

efficient and productive error control. He coined the term

universal numbers, or unums for short. Unums come in several

types, the Type III unums are called posits [3] and are the basis

of our adaptive tensor processing architecture.

II. POSIT NUMBER SYSTEM

From [2], we learn the definition of universal numbers, or

unums, for short: “Unums are for expressing real numbers and

ranges of real numbers.” There are two modes of operation,

selectable by the user: posit mode and valid mode.

In posit mode, a unum behaves much like a floating-point

number of fixed size, rounding to the nearest expressible value

if the result of a calculation is not expressible exactly; however,

H

2

the posit representation offers more accuracy and a larger

dynamic range than floats with the same number of bits. We can

refer to these simply as posits for short, just as IEEE 754

Standard floating-point numbers are referred to as floats.

In valid mode, a unum represents a range of real numbers and

can be used to rigorously bound answers much like interval

arithmetic does, but with several improvements over traditional

interval arithmetic. In this paper, we will focus on posit

arithmetic exclusively.

A posit is made up of four components: sign, regime,

exponent, and fraction. A posit is specified by its size in bits,

nbits, and the maximum number of exponents bits, es.

Suppose we view the bit string for a posit as a 2’s

complement signed integer, ranging from -2n-1 to 2n-1. Let k be

the integer presented by the regime bits, and e the unsigned

integer represented by the exponent bits, if any. If the set of

fraction bits is {𝑓1, 𝑓2, ⋯ , 𝑓𝑓𝑠} possibly the empty set, let f be

the value represented by 1. 𝑓1𝑓2 ⋯ 𝑓𝑓𝑠. Then the value of a posit

is defined by the following equation:

𝑥 = {

0, 𝑝 = 0,

±∞, 𝑝 = −2𝑛−1

𝑠𝑖𝑔𝑛(𝑝) × 𝑢𝑠𝑒𝑒𝑑𝑘 × 2𝑒 × 𝑓, 𝑎𝑙𝑙 𝑜𝑡ℎ𝑒𝑟 𝑝.

The following figure shows these fields for a 16-bit posit

with 3 exponent bits, referred to as posit<16,3>.

The sign bit 0, shown in red, implies that the value is positive.

The regime bits have a run of three 0s terminated by the

opposite bit 1, which implies the power of useed is -3. Useed is

defined as 22𝑒𝑠
 and represents the scaling factor of the regime.

In this example, the scale factor contributed by the regime is

256-3. The exponent bits 101, shown in blue, represent 5 as an

unsigned binary integer, and contribute a scale factor of 25.

Finally, the fraction bit 11011101, shown in black, represent

221 as an unsigned binary integer, yielding a fraction value of

1.0 + 221/256. The value of this posit bit pattern is 477x2-27 ~

3.55393x10-6.

The size of the regime and exponent fields is variable

creating a tapered precision real number system, with a

dynamic range perfectly symmetric around 1. The minimum

and maximum positive number for a posit configuration are

called minpos and maxpos. Their values are a function of the

scaling factor of the regime and the size of the posit:

{𝑚𝑖𝑛𝑝𝑜𝑠, 𝑚𝑎𝑥𝑝𝑜𝑠} = {𝑢𝑠𝑒𝑒𝑑−𝑛𝑏𝑖𝑡𝑠+2, 𝑢𝑠𝑒𝑒𝑑𝑛𝑏𝑖𝑡𝑠−2}

The ratio of maxpos to minpos is 𝑢𝑠𝑒𝑒𝑑2𝑛𝑏𝑖𝑡𝑠−4, which defines

the dynamic range of the posit. The posit format uses regime

bits to raise useed to the power of any integer from -nbits+1 to

nbits-1, otherwise stated, the dynamic range of a posit is an

exponential of an exponential of an exponential. This allows

posits to create a larger dynamic range from fewer exponent bits

than IEEE floats, leaving more fraction bits available to

improve the precision of a value representation.

A wonderful way to visualize the structure of a posit

configuration is to realize that they derive from Type II unums

that mapped binary integers to the projective reals. Projective

reals wrap the real number line onto a circle so that negative

and positive infinity meet at the top.

The diagram on the left represents a 2 bit posit. We move to

three bits by inserting a value between 1 and ±∞. It could be

any real number greater than 1; it could be 2, 10, 𝜋, or googol.

The choice of this number seeds how the rest of the ring of

unums is populated, to signify its importance this number was

given the symbolic name useed. As we have seen above, for

posits this value is set to 22𝑒𝑠
. Further bit expansion follows the

rules that negation reflects about the vertical axis, and

reciprocation reflects about the horizontal axis. The next figure

shows a ring plot of values for a posit<5,1>:

III. ERROR-FREE LINEAR ALGEBRA

Posits offer higher precision than floats at the same size due

to tapering. This allocates fraction bits where a typical

computation needs them: around 1.0. However, the improved

accuracy of posits does not provide error-free linear algebra in

the same way that simply going to the next bigger float doesn’t

resolve numerical issues in an algorithm. The addition of a quire

to the posit standard enables rounding control for arbitrary

3

computational paths and graphs. The quire is equivalent to the

super-accumulator of Kulisch.

In 2008, the IEEE 754 standard [4] added a fused multiply-

add. Fusing is defined as deferring the rounding of a

computational path until the last assignment operation. For

example, a floating-point fused multiply-add, or FMAC, takes

the operand for addition and uses it as input to the multiplication

avoiding a rounding step. This leads to less rounding error than

the discrete multiply followed by the addition. However, it

increases irreproducibility due to variability of compilers and

hardware. Some processors do not have a fused multiply-add

instruction, some processors use higher internal precision

during computation, and different compilers may emit different

instruction sequences. To gain control over rounding error, the

rounding decision must be programmer visible.

In the posit standard the following instructions can interact

with the quire:

Fused multiply-add (𝑎 × 𝑏) + 𝑐

Fused add-multiply (𝑎 + 𝑏) × 𝑐

Fused multiply-multiply-subtract (𝑎 × 𝑏) + (𝑐 × 𝑑)

Fused sum ∑ 𝑎𝑖

Fused dot-product ∑ 𝑎𝑖𝑏𝑖

The usage model for the quire is to be the intermediate

accumulator for a programmer defined computational path. In

code form:

posit<16,1> a,b,c, x;

quire<16,1> q;

q = a * b;

 … rest of the computational path

q += c; // last step in the computation

x = q; // final rounding step

This is a generalization of the single fused instructions of the

IEEE standard, and this generalization is particularly valuable

for the construction of math libraries. The fused dot-product is

the key innovation in our adaptive tensor processor by elevating

to an atomic instruction with its own stream control.

IV. POSIT QUIRES AND QUIRE SIZE

The size of a posit quire is a function of the number of bits in

the posit and the size of the exponent field. In mathematical

terms, the smallest magnitude nonzero value that can arise after

a multiply is 𝑚𝑖𝑛𝑝𝑜𝑠2. Every other product is an integer

multiple. The largest possible product value is 𝑚𝑎𝑥𝑝𝑜𝑠2, and

thus a fixed-point integer big enough to hold these extremes is:

𝑚𝑎𝑥𝑝𝑜𝑠2

𝑚𝑖𝑛𝑝𝑜𝑠2
= 𝑢𝑠𝑒𝑒𝑑2×2×(𝑛𝑏𝑖𝑡𝑠−2) = 2(4𝑛𝑏𝑖𝑡𝑠−8)2𝑒𝑠

As with the discussion of the super-accumulator in the

introduction, we need to accumulate some non-trivial number

of these products, and for k additional bits you would be able to

accumulate 2𝑘 products. A value of 𝑘 = 30 would

accommodate roughly a billion products. For custom hardware

we can dial this number in to perfection. Add a final sign bit and

the size of a posit quire is given by the equation:

(4𝑛𝑏𝑖𝑡𝑠 − 8)2𝑒𝑠 + 1 + 30.

The following table shows the quire sizes for different

standard posit sizes and we juxtapose the size of an equivalent

floating-point super-accumulator for comparison.

POSIT FLOAT

nbits es quire nbits ebits quire

8 0 64 8 2 21

16 1 256 16 5 87

32 2 512 32 8 647

64 3 2048 64 11 4295

128 4 8095 128 15 65763

Table 1. Quire sizes for posits and floats

As a rule of thumb, a posit has roughly the same precision as

a float twice its size, so 32-bit posits compete with 64-bit floats,

and the posit quire is a factor of 8 smaller.

V. GENERAL PURPOSE QUIRES

To enable quires for explicit rounding control they need to be

visible to the programmer. For traditional load-store instruction

set architectures (ISA) this implies that we need to create a

special quire namespace and connect that namespace to the

individual instructions that need to participate.

Given the size of the quire, loading and unloading it to

memory is a long-latency operation that would kill any

performance of a traditional arithmetic pipeline. A fused

multiply-accumulate pipeline typically runs at 1 clock cycle

throughput, but a memory load of a 512bit value is measured in

hundreds of clocks. To sustain these throughputs, all high-

performance linear algebra algorithms use some form of

blocking to prime the caches with the next set of operands.

Depending on the DRAM parameters and the cache line size, a

typical optimized data flow would bring in 2D blocks of 8-16

lines. If we design a quire register set and ISA for fused dot

products, to support the blocking of memory, we would need to

create a register file of at least 8 and preferably more

addressable quire registers. For 64-bit floats, an 8-register quire

extension would require roughly 32k, or the size of a typical L1

data cache. But even more problematic than its size is that this

quire register file would be part of the context switch state of a

general-purpose processor. An additional 32k of context switch

state is insurmountable for a CPU. It is thus more likely that

hardware accelerators and domain specific processors are the

only computational structures that will be able to offer error-

free linear algebra.

VI. HARDWARE ACCELERATION

Google’s Tensor Processing Unit™ [6] is a notable example

of the benefits of custom hardware acceleration for tensor

operators. They focused on the dense matrix/vector operations

present in neural network training and inference workloads. The

data flow that this class of tensor operators need is centered

about the weight matrices. In our case, we want to

operationalize the fused dot-product to deliver error-free linear

algebra, and as we have seen in the previous section, this

4

requires special handling of the quire in conjunction with

blocked data movement to and from memory.

Figure 1 shows the error-free posit-based linear algebra

hardware accelerator architecture.

Fig. 1: Error-free Tensor Accelerator

The error-free tensor processor is built around a scalable

torus fabric of posit arithmetic units. The Front-end and DMA

engines orchestrate tensor data flow movement to support fused

dot-product streams. They use a block-oriented memory access

pattern to improve DRAM efficiency and access latency. As

blocks arrive at the fused-operator controller, the contained

fused operator operand sets identify the respective quires that

need to receive the intermediate results. Under the direction of

a computational kernel, the DMA, fused operator controller,

and quire register file coordinate a specific stream schedule that

leaves the quires stationary until they are assigned to their final

destination at which point they are evicted from the quire

register file. This avoids having to move quires to and from

memory: instead, we move dot-product streams past the quires.

VII. ERROR-FREE DISTRIBUTED MEMORY

The error-free posit tensor accelerator was designed to scale

up and down to accommodate large-scale HPC applications and

low-latency real-time embedded applications. This is

accomplished by a traditional distributed memory design with

an additional fine-grain data flow accelerator network. The

scalable cluster design is show in Figure 2. We leverage a fast

serial processor to address workloads that have a significant

serial component and are governed by Amdahl’s Law. The

design couples that with a scalable tensor hardware accelerator

to address workloads that are governed by weak scaling

constraints. The CPU side is connected via an IP network to

support coarse grain distributed memory operations to support

very large in-memory data structures and global

transformations such as global addressing mods and reductions.

On the tensor accelerator side, computation is organized in fine-

grain data flow to support the quire accumulation The

accelerators are also connected by a network, but instead of an

IP network, this network is a mesh network to support fine-grain

data flow computations and transformations such as sorts and

transposes.

Fig. 2: Distributed memory error-free linear algebra cluster

VIII. CONCLUSION

We have presented a scalable, error-free linear algebra

hardware acceleration architecture based on posits. The

fundamental constraint in delivering error-free computation is

an explicit management of the accumulation of intermediate

results in programmer visible quires. These quires are

reasonable for posit arithmetic, but grow very large for floating-

point arithmetic. This creates an insurmountable constraint for

incorporating quires into a general-purpose CPU as the context

switch state becomes too large to be practical. This leads to the

proposal to consolidate the quire management to domain

specific processors and hardware accelerators, and we

presented such an architecture centered about fused dot-

products.

ACKNOWLEDGMENT

This work is heavily influenced by the work and publications

of John Gustafson, currently at National University of

Singapore. Hardware design experimentation has been

provided by Calligo Technologies in Bangalor, India, and the

cluster design was provided by Stillwater Supercomputing,

Inc., California. The incorporation of posits into MTL4, a high-

performance distributed memory and GPU acceleration math

library was provided by Simunova AG, in Germany.

5

REFERENCES

[1] John L. Gustafson, The End of Error: Unum Computing, Chapman and

Hall/CRC Press, February 2015.
[2] John L. Gustafson, “Posit Arithmetic,” Mathematica Notebook

describing the posit number system, 30 September 2017.
[3] John L. Gustafson, Isaac Yonemoto, Beating Floating Point at its Own

Game: Posit Arithmetic. April, 2017, online http::posithub.org
[4] “IEEE Standard for Binary Floating-Point Arithmetic,” ANSI/IEEE Std

754-1985, 1985.

[5] Ulrich W. Kulisch and W.L. Miranker, “The arithmetic of the digital
computer: a new approach”, SIAM Review, Vol. 28, No. 1, March 1986.

[6] Norman P. Jouppi et. al., In-Datacenter Performance Analysis of a

Tensor Processing Unit™. Toronta, Canada, ISCA 2017.
[7] Y. Uguen and F. de Dinechin, “Design-space exploration for the Kulisch

accumulator,” March 2017, working paper or preprint [Online], Available:
https://hal.archives-ouvertes.fr/hal-01488916

[8] R. Iakymchuk, S. Collange, D. Defour, and S. Graillat, “ExBLAS:

Reproducible and Accurate BLAS Library,” Jul. 2015. [Online].
Available: https://hal.archives-ouvertes.fr/hal-01202396

[9] BLAS (Basic Linear Algebra Subprograms). [Online]. Available:

http://www.netlib.org/blas/

[10] L. Fousse, G. Hanrot, V. Lef`evre, P. P´elissier, and P. Zimmermann,

“MPFR: A Multiple-precision Binary Floating-point Library with Correct

Rounding,” ACM Trans. Math. Softw., vol. 33, no. 2, Jun. 2007. [Online].
Available: http://doi.acm.org/10.1145/1236463.1236468

[11] P. Ahrens, H. D. Nguyen, and J. Demmel, “Efficient reproducible floating

point summation and BLAS,” EECS Department, University of
California, Berkeley, Tech. Rep. UCB/EECS-2015-229, Dec 2015.

[Online]. Available:

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-
229.html

[12] Jack Koenig, David Biancolin, Jonathan Bachrach, Krste Asanovic, “A

Hardware Accelerator for Computing an Exact Dot Product,” IEEE 24th
Symposium on Computer Arithmetic (ARITH), 2017.

https://hal.archives-ouvertes.fr/hal-01202396

